

UNIT – III chapter 1

For Advanced SQL see PPTs

UNIT – III chapter 2

Data Modelling Using the Entity..Relationship Model

Database application refers to a particular database and the associated

programs that implement the database queries and updates.

 For example, a BANK database application that keeps track of customer

accounts would include programs that implement database updates

corresponding to customers making deposits and withdraw, also These

programs provide user-friendly graphical user interfaces (GUls) utilizing forms

and menus for the end users of the application-the bank tellers, in this

example. Hence, part of the database application will require the design,

implementation, and testing of these application programs.

Entity-Relationship (ER) model, which is a popular high, level conceptual

data model. This model and its variations are used for the conceptual design of

database applications

Phases of Database Design

Above figure shows a simplified description of the database design process.

Requirements collection and analysis:

 In this step, the database designers interview prospective database users

to understand and document their data requirements.

 The result of this step is a concisely written set of users' requirements.

 These requirements should be specified in as detailed and complete a

form as possible

Conceptual Design

 Once all the requirements have been collected and analyzed, the next

step is to create a conceptual schema for the database; using a high-level

conceptual data model this step is called conceptual design.

 The conceptual schema is a concise description of the data requirements

of the users and includes detailed descriptions of the entity types,

relationships, and constraints; these are expressed by using the ER

Model

 This approach enables the database designers to concentrate on

specifying the properties of the data, without being concerned with

storage details.

Logical Design

 The next step in database design is the actual implementation of the

database, using a commercial DBMS.

 Most current commercial DBMSs use an implementation data model

such as the relational or the object-relational database model.

 In this phase the conceptual schema is transformed from the high-level

data model into the implementation data model.

 This step is called logical design or data model mapping, and its result is

a database schema in the implementation data model of the DBMS.

Physical Design

 The last step is the physical design phase, during which the internal

storage structures, indexes, access paths, and file organizations for the

database files are specified.

 In parallel with these activities, application programs are designed and

implemented as database transactions corresponding to the high-level

transaction specifications.

ER (Entity-Relationship) Model

 Entity-Relationship model is a popular high, level conceptual data

model. This model and its variations are frequently used for the

conceptual design of Database applications

 The ER model describes data as entities, relationships, and attributes.

 ER Model is best used for the conceptual design of database.

 ER Model is based on: Entities and their attributes,

Relationships among entities

Entity:

 An entity, which is a "thing" in the real world with an independent

existence.

 An entity may be an object with a physical existence (for example, a

particular person, car, house, or employee) or it may be an object with a

conceptual existence (for example, a company, a job, or a university

course)

 In the University database context, an individual student, faculty member,

a class room, a course are entities

 An entity represents some "thing" (in the mini world) that about which we

want to maintain some data. An entity could represent a physical object

(e.g., house, person, automobile, and widget) or a less tangible concept

(e.g., company, job, academic course).

Attributes

 Attribute describes property or characteristics of an entity

 These are the properties of the entity.

 For example, an employee entity may be described by the employee's

name, age, address, salary, and job. A particular entity will have a value

for each of its attribute

Types of Attributes

1. Simple versus composite

2. single-valued versus multivalued

3. stored versus derived.

1. Composite versus Simple (Atomic) Attributes

Composite attributes can be divided into smaller subparts, which represent

more basic attributes with independent meanings.

For example, the Address attribute of the employee entity can be subdivided

into StreetAddress, City, State, and Zip,3 with the values "2311 Kirby,"

"Houston," "Texas," and "77001."

Simple Attributes: Attributes that are not divisible are called simple or

atomic attributes.

Ex: Zipcode

2. Single-Valued versus Multivalued Attributes

Single-valued attribute is the attribute which is having only single value.

 Most attributes have a single value for a particular entity; such attributes are

called single-valued.

For example, Age, is a single-valued attribute of a person.

Multi-valued attribute is the attribute which is having more than one value.

An attribute can have a set of values for the same entity-for example, Colors

attribute for a car, or a phno attribute for a person.

3. Stored versus Derived Attributes.

Derived attribute is one whose value can be calculated/derived from the values

of other attributes. The Age and BirthDate attributes of a person. For a

particular person entity, the value of Age can be determined from the current

(today's) date and the value of that person's BirthDate. The Age attribute is

hence called a derived attribute and is said to be derivable from the

BirthDate attribute, which is called a stored attribute.

Entity Types and Entity Sets:

 An entity type defines a collection (or set) of entities that have the same

attributes.

 Each entity type in the database is described by its name and attributes.

 A database usually contains groups of entities that are similar.

 For example, a company employing hundreds of employees may want to

store similar information concerning each of the employees.

 These employee entities share the same attributes, but each entity has

its own value(s) for each attribute.

 The collection of all entities of a particular entity type in the database at

any point in time is called an entity set.

 The entity set is usually referred to using the same name as the entity

type.

 An entity type is represented in ER diagrams as a rectangular box

enclosing the entity type name.

 An entity type describes the schema or intension for a set of entities that

share the same structure.

Key Attributes of an Entity Type

 An important constraint on the entities of an entity type is the key or

uniqueness constraint on attributes.

 An entity type usually has an attribute whose values are distinct for each

individual entity in the entity set. Such an attribute is called a key

attribute, and its values can be used to identify each entity uniquely.

 For example, the Name attribute is a key of the COMPANY entity type

because no two companies are allowed to have the same name.

 For the Employee entity type typical key attribute is Empid.

 Specifying that an attribute is a key of an entity type means that the

preceding uniqueness property must hold for every entity set of the entity

type. Hence, it is a constraint that prohibits any two entities from having

the same value for the key attribute at the same time.

 Domains of Attributes:

 Each simple attribute of an entity type is associated with a value set (or

domain of values), which specifies the set of values that may be assigned

to that attribute.

 For each individual entity we can specify the value set.

 For the Name attribute as being the set of strings of alphabetic

characters separated by blank characters, and so on.

 Value sets are not displayed in ER diagrams. Value sets are typically

specified using the basic data types available in most programming

languages, such as integer, string, boolean, float, enumerated type,

subrange,and so on.

Notations of ER Diagrams

Example Database Application: COMPANY

Initial Conceptual Design of COMPANY database

Suppose that Requirements Collection and Analysis results in the following
(informal) description of the COMPANY mini world:

The company is organized as a collection of departments.

 Each department
o has a unique name

o has a unique number
o is associated with a set of locations

o has a particular employee who acts as its manager (and who
assumed that position on some date)

o has a set of employees assigned to it

o controls a set of projects
 Each project

o has a unique name

o has a unique number
o has a single location

o has a set of employees who work on it
o is controlled by a single department

 Each employee

o has a name
o has a SSN that uniquely identifies her/him

o has an address
o has a salary
o has a sex

o has a birthdate
o has a direct supervisor
o has a set of dependents

o is assigned to one department
o works some number of hours per week on each of a set of projects

(which need not all be controlled by the same department)
 Each dependent

o has first name

o has a sex
o has a birthdate

o is related to a particular employee in a particular way (e.g., child,
spouse, pet)

o is uniquely identified by the combination of her/his first name and

the employee of which (s)he is a dependent

RELATIONSHIP TYPES, RELATIONSHIP SETS

Relationship:

 It is Association among two or more entities.

 When two or more entities are associated with each other, we have an

instance of a Relationship.

 A relationship relates two or more distinct entities with a specific

meaning.

 It is represented by a diamond.

 Relationships can have their own attributes

For Example EMPLOYEE john works in the PRODUCTION DEPT

 Relationship WORKS-IN has Employee and Department as the

participating entity sets

 Whenever an attribute of one entity type refers to an entity (of the same

or different entity type), we say that a relationship exists between the two

entity types

Relationship Type:

 Relationship type is a group of relationships having same attributes.

 Relationships of the same type are grouped or typed into a relationship

type.

 For example, the WORKS_ON relationship type in which EMPLOYEEs

and PROJECTs participate, or the MANAGES relationship type in which

EMPLOYEEs and DEPARTMENTs participate.

Relationship Set:

 It is Collection of similar relationships.

 Set of relationships over the same entity sets

 The current set of relationship instances represented in the database.

 The current state of a relationship type.

 Below figures shows employee set consists of 7 employee enties.

Relationship Degree

Degree of a Relationship Type.

 The degree of a relationship is the number of participating entities.

 It refers to number of entity sets that participate in a relationship set.

 The degree of WORKS-FOR relationship is two.

 A Relationship type of degree two is called binary, and a Relationship

type of degree three is called ternary.

 In ER diagrams, relationship types are displayed as diamond-shaped

boxes, which are connected by straight lines to the rectangular boxes

representing the participating entity types.

 Binary relationships are very common and widely used.

Relationship Attributes

 A relationship type can have attributes describing properties of a

relationship.

 FOR EXAMPLE Ramireddy works for CSE Deparment since 2011

 WOEKS-FOR relationship type have attributes like empid, deptid and

since.

Constraints on Relationships

 Relationship types usually have certain constraints that limit the

possible combinations of entities that may participate in the

corresponding relationship set.

 For example if the company has a rule that each employee must work for

exactly one department, then we would like to describe this constraint in

the schema.

Two main types of relationship constraints

1. Cardinality ratio

 2. Participation.

1 Cardinality Ratios for Binary Relationships

 The cardinality ratio for a binary relationship specifies the maximum

number of entities of an entity can be associated with other entity via

relationship set.

Following are the Cardinality Ratios for binary Relationships

1. One to One(1:1)

2. One to many(l:N)

3. Many to one(N:l)

4. Many to many (M:N)

Consider binary relationship set R between entity sets A and B

One to One (1:1):

An entity in A is associated with at most one entity in B, and an entity in B is

associated with at most one entity in A.

An example of a 1:1 binary relationship is MANAGES which relates a

department entity to the employee who manages that department. This

represents the mini-world constraints that at any point in time-an employee

can manage only one department and a department has only one manager.

One to Many: An entity in A is associated with many entities in B and an

entity in B is associated with at most one entity in A.

Many to One: An entity in A is associated with at most one entity in B, an

entity in B is associated with many entities in A.

Ex: an employee works in a single department but a department consists of

many employees.

Many to Many: An entity in A is associated with many entities in B, and an

entity in B is associated with many entities in A.

Ex: The relationship type WORKS_ON is of cardinality ratio M:N, because the

mini-world rule is that an employee can work on several projects and a project

can have several employees.

2. Participation Constraints

This constraint specifies the minimum number of relationship instances that

each entity can participate in, and is sometimes called the minimum

cardinality constraint.

There are two types of participation constraints-

1 total participation

2. Partial participation

1. Total participation:

Total participation means every entity in an entity type must participated in a

relationship set.

If a company policy states that every employee must work for a department,

then an employee entity can exist only if it participates in at least one

WORKS_FOR relationship instance Thus, the participation of EMPLOYEE in

WORKS_FOR is called total participation, meaning that every entity in "the

total set" of employee entities must be related to a department entity via

WORKS_FOR. Total participation is also called existence dependency.

2. Partial participation:

Partial participation means only some of the entities of an entity type can be

participated in a relationship set

We do not expect every employee to manage a department, so the participation

of EMPLOYEE in the MANAGES relationship type is partial, meaning that some

or "part of the set of" employee entities are related to some department entity

via MANAGES, but not necessarily all.

WEAK ENTITY TYPES

 Entity types that do not have key attributes of their own are called weak

entity types.

 In contrast, regular entity types that do have a key attribute are also

called strong entity types.

 Entities belonging to a weak entity type are identified by being related to

specific entities from another entity type in combination with one of their

attribute values

ER DIAGRAM – Relationship Types are: WORKS_FOR, MANAGES,

WORKS_ON, CONTROLS,SUPERVISION, DEPENDENTS_OF

EER (Enhanced Entity Relationship) Model

 The ER model is generally sufficient for "traditional" database

applications.

 But more recent applications of DB technology (e.g., CAD/CAM,

telecommunication, images/graphics, multimedia, data

mining/warehousing, geographic info systems) cry out for a richer model.

 The EER (Enhanced ER) model includes all the modeling concepts of the

ER model ,In addition, it includes the concepts of subclass and

superclass and the related concepts of specialization and generalization.

 Another concept included in the EER model is that of a category or union

type which is used to represent a collection of objects that is the union of

objects of different entity types

SUBCLASSES, SUPERCLASSES AND INHERITANCE

 An entity type is used to represent both a type of entity and the entity set

or collection of entities of that type that exist in the database.

 For example, the entity type EMPLOYEE describes the type (that is, the

attributes and relationships) of each employee entity, and also refers to

the current set of EMPLOYEE entities in the COMPANY database.

 In many cases an entity type has numerous sub groupings of its entities

that are meaningful and need to be represented explicitly because of

their significance to the database application. For example, the entities

that are members of the EMPLOYEE entity type may be grouped further

into SECRETARY, ENGINEER, MANAGER, TECHNICIAN,

SALARIED_EMPLOYEE, HOURLY_EMPLOYEE, and so on.

 The set of entities in each of the latter groupings is a subset of the

entities that belong to the EMPLOYEE entity set, meaning that every

entity that is a member of one of these sub groupings is also an employee.

 We call each of these sub groupings a subclass of the EMPLOYEE entity

type, and the EMPLOYEE entity type is called the super class for each of

these subclasses

 In our previous example, EMPLOYEE/SECRETARY and

EMPLOYEE/TECHNICIAN are two class/subclass relationships.

 An important concept associated with subclasses is that of type

inheritance. Recall that the type of an entity is defined by the attributes

it possesses and the relationship types in which it participates.

 An entity that is a member of a subclass inherits all the attributes of the

entity as a member of the super class.

 The entity also inherits all the relationships in which the super class

participates.

 Notice that a subclass, with its own specific (or local) attributes and

relationships together with all the attributes and relationships it inherits

from the super class, can be considered an entity type.

Specialization

 Specialization is the process of defining a set of subclasses of an entity

type;

 That entity type is called the super class of the specialization.

 The set of subclasses that form a specialization is defined on the basis of

some distinguishing characteristic of the entities in the super class.

 For example, the set of subclasses {SECRETARY, ENGINEER,

TECHNICIAN} is a specialization of the super class EMPLOYEE that

distinguishes among employee entities based on the job type of each

employee entity.

 We may have several specializations of the same entity type based on

different distinguishing characteristics.

 For example, another specialization of the EMPLOYEE entity type may

yield the set of subclasses {SALARIED_EMPLOYEE,

HOURLY_EMPLOYEE}; this specialization distinguishes among

employees based on the method of pay.

 Above figure shows how we represent a specialization diagrammatically

in an EER diagram.

 The subclasses that define a specialization are attached by lines to a

circle that represents the specialization, which is connected to the super

class.

 The subset symbol on each line connecting a subclass to the circle

indicates the direction of the super class/subclass relationship.

 Attributes that apply only to entities of a particular subclass-such as

Typing Speed of SECRETARY are attached to the rectangle representing

that subclass. These are called specific attributes (or local attributes) of

the subclass.

 Similarly, a subclass can participate in specific relationship types, such

as the HOURLY_EMPLOYEE subclass participating in the BELONGS_TO

relationship in above figure.

Generalization

 The term generalization to refer to the process of defining a generalized

entity type from the given entity types.

 Generalization a reverse process of abstraction in which we suppress

the differences among several entity types, identify their common

features, and generalize them into a single super class of which the

original entity types are special subclasses.

 For example, consider the entity types CAR and TRUCK shown in below

Figure. Because they have several common attributes, they can be

generalized into the entity type VEHICLE, as shown in below Figure.

Both CAR and TRUCK are now subclasses of the generalized super class

VEHICLE.

 Notice that the generalization process can be viewed as being functionally

the inverse of the specialization process.

 Hence, in below Figure we can view {CAR, TRUCK} as a specialization of

VEHICLE, rather than viewing VEHICLE as a generalization of CAR and

TRUCK.

 Similarly, in previous figure we can view EMPLOYEE as a generalization

of SECRETARY, TECHNICIAN, and ENGINEER.

 A diagrammatic notation to distinguish between generalization and

specialization is used in some design methodologies. An arrow pointing

to the generalized super class represents a generalization, whereas

arrows pointing to the specialized subclasses represent a specialization

E-R Diagram for Company Database

